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Molecular mode-coupling theory applied to a liquid of diatomic molecules
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We study the molecular mode-coupling theory for a liquid of diatomic molecules. The equations for the
critical tensorial nonergodicity parametersFl l 8

m (q) and the critical amplitudes of theb relaxationH l l 8
m (q) are

solved up to a cutoffl co52 without any further approximations. Herel ,m are indices of spherical harmonics.
Contrary to previous studies, where additional approximations were applied, we find in agreement with simu-
lations that all molecular degrees of freedom vitrify at a single temperatureTc . The theoretical results for the
nonergodicity parameters and the critical amplitudes are compared with those from simulations. The qualitative
agreement is good for all molecular degrees of freedom. To study the influence of the cutoff on the nonergod-
icity parameter, we also calculate the nonergodicity parameters for an upper cutoffl co54. In addition, we also
propose a method for the calculation of the critical nonergodicity parameter from the liquid side of transition.

PACS number~s!: 61.25.Em, 64.70.Pf, 61.43.Fs, 61.20.Ja
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I. INTRODUCTION

The mode-coupling theory~MCT! of the glass transition
is by now an important tool to understand experiments in
simulations of supercooled liquids@1#. For a long time, most
of the theoretical investigations concentrated on simple m
atomic or binary liquids. All universal and even system
specific predictions of these investigations could be tested
a quantitativelevel in a system of hard colloids@2,3#, which
is an excellent realization of a hard-sphere system, an
computer simulations for a binary Lennard-Jones sys
@4,5#. Details of theory and tests for simple glass formers c
be found in review articles@6–12# and articles cited therein

Although the theory was originally formulated only fo
these simple systems, most of the experimental and sim
tion support came from research on much more comp
systems @e.g., tri-a-naphtylbenzene@13#, Orthoterphenyl
~OTP! @14–17#, 0.4Ca(NO3)20.6KNO3 ~CKN! @18–21#,
Glycerol @22–24#, Salol @25–27#, toluene @28#, and water
@29,30##. Also most of the experimental methods used d
not measure density correlation functions or their susce
bilities, for which the original theory was formulated. Eve
neutron-scattering experiments in systems consisting of m
ecules whose components have different cross sections
neutrons@17,23,28# do not measure the density correlatio
function exclusively, but rather a mixture of more comp
cated correlation functions involving molecular degrees
freedom @31# ~see also@32# for a single linear molecule!.
Dielectric loss measurements@21,24# measure directly the
correlation function of a tensor of rank 1. Depolarized lig
scattering @14,19,25,33#, Kerr effect experiments@34,35#,
nuclear magnetic resonance@36–38#, and electron-spin reso
nance@39# ~and references therein! measure correlation func
tion of a tensor of rank 2. The mentioned tensorial quanti
are all related to orientational degrees of freedom~ODOF!,
whereas the original theory@40# only considered transla

*Author to whom correspondence should be addressed.
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tional degrees of freedom~TDOF!, i.e., the center-of-mas
motion. But of course, when comparing experimental res
on complex systems with predictions of the MCT for simp
liquids, it was always reasonable to argue that there ar
every experiment couplings to the center-of-mass moti
For example, reorientation of dipoles measured in dielec
loss measurements can be induced by the center-of-mass
tion via a translation-rotation coupling. Also the reorient
tion of the polarizability tensor in light scattering measur
ments is related to a physical rotation of the molecules
will therefore be coupled to the center-of-mass motion of
molecules as well. A slowing down of this motion due
very slow structural relaxations can consequently also in
rectly be measured in the mentioned experiments. In a
tion, it is perfectly justified to perform tests of theuniversal
predictions of MCT in complicated molecular and polyme
systems@41# for b-scaling laws and properties of thea re-
laxation, such as the time temperature superposition p
ciple and wave-vector-dependent stretching exponents, s
the underlying universal features of the bifurcation scena
should also remain valid for molecular systems.

But beyond the universal aspects, MCT aims to be a
croscopic theory of structural relaxation. This goal is to
large extent achieved for simple liquids. There it was p
sible to obtain quantitative agreement between experim
and theory for the full dynamic range of structural relaxati
~i.e., b and a region! @2,3,5#. Recently, also a theory fo
anomalous high-frequency oscillations~Bose peak phenom
enon! was formulated within MCT@42#. The molecular
mode-coupling theory~MMCT!, which has been under stud
for a few years now, intends to extend this line of research
experimentally relevant molecular systems. There are th
different mode-coupling theories for the description of d
ferent aspects of molecular degrees of freedom. In@32,43#,
the motion of a single linear molecule in a liquid of spheric
atoms is studied. In@44#, a site-site description is formulated
which is perfectly adapted to study neutron-scattering exp
ments of molecular systems. In this approach, the ato
structure of the molecules is considered. Finally, the MMC
8004 ©2000 The American Physical Society



is
d

u

io
t t

rd
e
ds
r
r

ef

e
in
r

ica

s
as
n
m
-

i-
n

om
tu
dy
t

-
tw
In
e

he
p

ew
th

p-
ca
-
ic

a
e

-
un

fi-
the
u-
ic
les
e

we
s

rt,
in-
use
e

a

s

l
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@45# that we are using in this work@46# is devised to inves-
tigate the dynamics of a liquid of linear molecules. For th
purpose, a self-consistent mode-coupling theory for the
namic correlation functions of tensorial densitiesr lm(qW ,t)
was developed. These densities are the generalized Fo
components of the microscopic densityr(xW ,V) in an expan-
sion in spherical harmonics with respect to the orientat
V5(u,w) of the molecules and plane waves with respec
xW . An extension to arbitrary molecules is given in@47#. A
theory for arbitrary molecules was also formulated in@48#.
First results for the tensorial nonergodicity parameters~NEP!
and critical amplitudes were obtained for dipolar ha
spheres@46# and @49#, respectively. A study of the phas
diagram for glass transitions of a liquid of hard ellipsoi
was performed in Ref.@50#. Several aspects of the theory fo
general molecules were tested against simulation for wate
Refs.@51,52# and treating water as a linear molecule in R
@47#.

As in the MCT for simple liquids, the static structur
factorsSll 8

m (q) in the q frame, i.e., the coordinate system
which thez axis is along the wave vector, completely dete
mine the long-time dynamics and thus the NEP and crit
amplitudes. Note that the structure factors~static and dy-
namic! are diagonal inm in the q frame @46#. The static
structure factors have to be known to solve the equation
MMCT. They are either obtained by analytical theories
e.g., in Refs.@53–55# for ellipsoids or they have to be take
from simulations. In this work, we present a detailed co
parison of MMCT calculations of the NEP and critical am
plitudes with the results of simulation for a liquid of d
atomic molecules. A detailed description of the system a
the simulation can be found in@56,57#. There, tests of the
universal properties of MCT are also presented. For our c
parison between simulation and theory, the static struc
factors are taken from the simulation. In a preliminary stu
only the diagonal static correlatorsSll

m(q) were used as inpu
and also the dynamical correlatorsSll

m(q,t) and thus the NEP
were assumed to be diagonal@58#. This severe approxima
tion has led to unphysical results such as the existence of
different transition temperatures for ODOF and TDOF.
our study, we use diagonaland nondiagonal elements of th
static structure factor as input to calculateall components of
the NEP and, in addition, of the critical amplitudes. For t
calculation of the NEP, we also extend the necessary up
cutoff l co for the indexl to l co54.

The paper is organized as follows. In Sec. II, we revi
the main equations and concepts for the calculation of
critical NEP ~Sec. II A! and the critical amplitudes~Sec.
II B !. In Sec. III, we discuss the influence of different a
proximation schemes on the theoretically obtained criti
temperatures~Sec. III A! and their relation to simulation re
sults. Then we present the comparison of theoretical crit
NEP ~Sec. III B! and critical amplitudes~Sec. III C! with
simulations. Conclusions are presented in Sec. IV and
Appendix describes how the critical NEP can be obtain
from the liquid side close the the ideal glass transition.

II. MOLECULAR MODE-COUPLING THEORY

A. Nonergodicity parameter

The derivation of the equation of MMCT for the dynam
ics of linear molecules and general molecules can be fo
y-
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in @46# and@47#, respectively. We only repeat the basic de
nitions and equations and refer the reader for details to
literature. For the present work, in which we want to calc
late the critical NEP and the critical amplitudes of diatom
molecules, we only need the equations for linear molecu
in the limit of time to infinity. The basic quantities are th
correlation functions of tensorial densitiesr lm(qW ,t) and ten-
sorial current densitiesj lm

a (qW ,t),

r lm~qW ,t !5A4p i l (
n51

N

eiqW •xWn(t)Ylm„VW n~ t !…. ~1!

jW lm
a ~qW ,t !5A4p i l (

n51

N

vW n
aeiqW •xWn(t)Ylm„VW n~ t !…. ~2!

TheYlm„VW n(t)… are the standard spherical harmonics and
follow in our notation the textbook by Gray and Gubbin
@59#. vW n

a is either the center-of-mass velocityvW n(t) of thenth

molecule or its angular velocityvW n(t) depending on the in-
dex a:

vW n
a~ t !ªH vW n~ t !, a5T

vW n~ t !, a5R,
~3!

whereT andR stand for the translational and rotational pa
respectively. For the calculation of the NEP, we need in pr
ciple all spatial components of the currents but here we
as in @46# only the projection on directions defined by th
wave vectorqW and the angular momentum operatorLW . Tak-
ing into account also transversal currents will lead only to
small correction in the NEP@60#. We therefore define the
longitudinal currentsj lm

a (qW ,t),

j lm
a ~qW ,t !5

1

ql
a

~ q̂a jWa! lm~qW !, aP$T,R% ~4!

with

ql
a~q!ªH q, a5T

Al ~ l 11!, a5R
~5!

and the definition

q̂a
ªH qW , a5T

LW , a5R.
~6!

The quantities we are going to calculate are NEPFll 8
m (q) in

theq frame, i.e., in a coordinate system in which thez axis is
given by the direction of the wave vectorqW 5(0,0,q). In this
coordinate system, all correlation function

^r lm* (qW ,t)r l 8m8(q
W ,0)&5dmm8Sl ,l 8

m (q,t) are diagonal in m.
They are real and depend onumu only. The same holds for al
other tensorial quantities that we will use in theq frame. The
NEP are given by

Fll 8
m

~q!5 lim
t→`

Sll 8
m

~q,t !. ~7!
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As input for the mode-coupling equations, we need
static structure factorsSll 8

m (q). They are directly taken from
the simulation of Ka¨mmereret al. @57#. The system, investi-
gated there, is a one-component system of rigid diato
molecules. Each molecule is composed of two differ
Lennard-Jones particles, denoted byA andB. They have the
same mass and are separated by a distanced50.5sAA ,
wheresAA is the Lennard Jones parameter of atomA. The
interaction between two molecules is given by the sum of
interaction between the four particles, which is given by
Lennard-Jones potential Va,b(r )54«a,b@(sa,b /r )12

2(sa,b /r )26#, wherea,bP$A,B%. The exact choice of the
simulation parameters can be found in@56#. The off-diagonal
elements of the static structure factors were not yet publis
and had to be determined from the raw data.

The equation for the matrixF(q)[Fll 8
m (q) of NEP can

then be written@46# as

F~q!5@11K~q!S21~q!#21S~q!. ~8!

The matrixK is related to the Laplace transform of th
dynamic current correlation function and can be expresse
the inverse of a memory matrixF m(q)[Fl l 8

m (q) at t5`,

K l l 8
m

~qW !5(
aa8

ql
a~q!@F m~q!21# l l 8

aa8ql 8
a8~q!. ~9!

The mode-coupling approximations yield

F l l 8
maa8~q!'

1

2N S r0

4p D 2

( 8
qW 1qW 2

(
m1m2

(
l 1l 2

(
l 18 l 28

Vll 8 l 1l
18 l 2l

28
aa8

3~q,q1 ,q2 ;m,m1 ,m2!F
l 1l

18

m1 ~q1!F
l 2l

28

m2 ~q2!,

~10!

with

Vll 8 l 1l
18 l 2l

28
aa8 ~q,q1 ,q2 ;m,m1 ,m2!

ªv l l 1l 2
a ~q,q1 ,q2 ;m,m1 ,m2!v l 8 l

18 l
28

a8 ~q,q1 ,q2 ;m,m1 ,m2!* ,

~11!

v l l 1l 2
a ~q,q1 ,q2 ;m,m1 ,m2!ª(

l 3
ull 3l 2

a ~q,q1 ,q2 ;m,m1 ,m2!

3cl 3l 1

m1 ~q1!1~21!m~1↔2!,

~12!

and
e

ic
t

e
e

d

as

ull 1l 2
a ~q,q1 ,q2 ;m,m1 ,m2!

ª i l 11 l 22 lF ~2l 111!~2l 211!

~2l 11! G1/2
1
2 @11~21! l 11 l 21 l #

3 (
m18m28

~21!m28d
m

18m1

l 1 ~Qq1
!d

m
28m2

l 2 ~Qq2
!

3C~ l 1l 2l ;m18m28m!

3H q1 cosQq1
C~ l 1l 2l ;000!; a5T

Al 1~ l 111! C~ l 1l 2l ;101!; a5R.
~13!

Here the functionsC( l 1l 2l ;m1 ,m2 ,m) are the Clebsch-
Gordan coefficients anddm8m

l (Q) are related to Wigner’s
rotation matrices~we follow the notation of Gray and Gub
bins!. For given Euler anglesV5(F,Q,x), they are defined
as @59#

Dmm8
l

~V!5e2 imFdmm8
l

~Q!e2 im8x. ~14!

Qqi
is the angle betweenqW andqW i . The prime at the first

summation in Eq.~10! restrictsqW 1 ,qW 2 such thatqW 11qW 25qW .
Equations ~8!–~10! form a closed set of infinitely many
coupled nonlinear equations for the NEP. To obtain a so
able theory, we have to restrictl to be smaller than an uppe
cutoff, l< l co. The resulting equations can in principle b
solved by a fixed-point iteration algorithm. Physical contr
parameters such as the temperature and the density onl
ter via the static structure factor. At a critical temperature
density, the solution of this equation bifurcates from all fun
tions Fll 8

m (q) being zero to nonzero. In the simulations
Kämmereret al. @56,57#, the temperature was used as a co
trol parameter. Close to the transition temperatureTc , the
stability matrix of the iteration~see below! will have the
largest eigenvalueE0 approachingE051 from below. Con-
sequently, the convergence of the iteration is very slow
getting close toTc . The time for one iteration depends ve
sensitively on the upper cutoffl co. For l co52, one iteration
took 10 min on a MIPS R10000; forl co54 this time in-
creased to 6 h. We therefore concentrated onl co52 to deter-
mine the transition point with a high accuracy and used
calculation forl co54 mostly as a check for the sensitivity o
our results against changing the cutoff.

To overcome some of the restrictions connected to
critical slowing down of the convergence close toTc , we
determined the critical NEP, i.e., the NEP atTc , with two
alternative methods. For the standard fixed-point iteration
started at a temperature low enough to be in the glass s
Then the temperature is increased very slowly. At every te
perature, the equations for the NEP are solved by the it
tion

F(n11)~q!5G~Fn,e!, ~15!

whereG(F(n)) is the right-hand side of Eq.~8! and e5(Tc
2T)/Tc . This iteration converges exponentially fast towar
its solution as long as the temperature is not the critical te
perature. The convergence rate is determined by the lar
eigenvalueE0 of the stability tensorCll85]Gl /]Fl8 @61#.
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The indexl is an abbreviation for wave vectorsq and rota-
tional indicesl ,l 8,m. The exponential convergence rate
then lnE0. Close to and belowTc , the eigenvalueE0 can be
written asE0512AAe, with A being a positive constant
Therefore, the convergence rate isAAe and the number of
iterations to obtain convergence diverges inversely prop
tional toAe close toTc . With this number of iterations, the
deviations of our NEP from the true critical NEP are prop
tional to Ae, since the NEP exhibit the well-known squa
root singularity~cf. @6#!.

If the temperature is increased aboveTc , i.e., e,0, there
is no nonzero solution for the iteration Eq.~15!. Neverthe-
less, for 0,2e!1 the iteration is nearly stationary for
large number of iterations of the orderueu21/2 ~see the Ap-
pendix!. The approximate critical NEP is determined as t
stationary pointF̂(e), whose change along the eigenvec
with eigenvalue 1 of thecritical stability matrix is minimal
during iteration. But contrary to the NEP determined fro
the fixed-point iteration forT,Tc , the stationary NEP differ
only in orderueu instead of in orderAe from the true critical
NEP. Consequently, this property allows us in the followi
to cross-check the very accurate results forl co52 obtained
from the fixed-point iteration and also to obtain the critic
NEP for l co54.

B. Critical amplitudes

A central prediction of the mode-coupling theory of th
glass transition in simple liquids is the existence of t
b-scaling regime@62,63,6#. For the problem of a single
dumbbell in an isotropic hard-sphere system@32#, it was
demonstrated that theb-scaling law can be detected in eve
quantity that couples to the density. For a liquid of anis
tropic molecules, it is not very well defined which degree
freedom is driving the glass transition. The equations
MMCT couple all degrees of freedom and there are sit
tions where the transition is not caused by the TDOF
rather the ODOF@50#. But even in these systems, the facto
ization theorem is generically valid for all correlators. Th
can be proven using the standard techniques@6#. Therefore,
every dynamic structure factorSll 8

m (q,t;T) for 21!e!1 in
the b region can be written as

Sll 8
m

~q,t;T!5Fll 8
m

~q!1Hll 8
m

~q!G~ t/t0 ;s!. ~16!

The functionG(t/t0) is the same for alll ,l 8,m,q. t0 is an
overall microscopic scale.Hll 8

m (q) are the critical amplitudes
determining the intensity of the asymptoticb-scaling law for
a certain combination ofl, l 8, m, andq. Also, the correction
to the asymptotics, which determine, besides the temp
ture, the range of validity of the law Eq.~16!, depends on
these amplitudes~cf. Ref. @64# for simple liquids!. Differ-
ences in the observability of the critical correlators betwe
depolarized light-scattering experiments and dielectric l
measurements can be explained by differences in the am
tudesHll 8

m (q) involving l 52 andl 51, respectively~see Ref.
@43# for a single molecule!. To determine the amplitude
numerically to a high precision, it is necessary to be v
close to the transition point to make sure that all correct
terms of ordere are small compared to the leading term
r-

-

e
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orderAe. Due to the difficulties described above, we cou
only determine the critical amplitudes for upper cutoffl co
52.

III. RESULTS

A. The critical temperatures

For l co52 and in the full diagonalization approximatio
@58#, in which the static structure factorsS(q), the glass
form factors F(q), and the memory matrixF(q) are as-
sumed to be diagonal with respect tol, the glass transition
temperature for the TDOF predicted by MMCT is below t
transition temperature of the MD simulationsTc

MD50.477.
Note that these temperatures are given in Lennard-Jo
units ~cf. @56#!. In all other known examples, the MCT ove
estimates the tendency for vitrification. As an additional
tifact of the full diagonalization, the ODOF vitrify at a lowe
temperature than the TDOF. Since the top-down symme
of the dumbbells is broken, the full equations of MMC
~8!–~10! generically do not allow for such a scenario. A
soon as we takeS(q) nondiagonal, all degrees of freedo
undergo a glass transition at the same temperature abov
MD result. To study the influence of different diagonaliz
tion approximations in a bit more detail, we investigated s
eral cases, with the main condition ofS(q) being nondiago-
nal: ~i! F(q) andF(q) diagonal~dd!; ~ii ! F(q) diagonal and
F(q) nondiagonal~dnd!; ~iii ! F(q) and F(q) nondiagonal
~ndnd!.

Let us discussl co52 first. For this case,Tc has been
determined very accurately from the asymptotic behav
@12E0(T)#2}e ~see Sec. II B! for the largest eigenvalue
E0(T). Figure 1 demonstrates this law for case~iii !. The
highest transition temperature is obtained for case~i!. Here
the transition temperature is roughly three times as large
the MD result,Tc

dd51.4. In case~ii !, it only slightly de-
creases toTc

dnd51.38. If everything is taken nondiagona
@case ~iii !#, the transition temperature isTc50.7521. Al-

FIG. 1. The square deviation of the largest eigenvalue of
stability matrix ~see text! from its critical valueE0(Tc)51 as a
function of temperature. The full line is a linear fit (12E0)2}(Tc

2T)2 to the data withTc50.752 15. The inset shows a magnific
tion for the same quantity very close toTc .
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though still twice as large as the MD result, the discrepa
of this result fromTc

MD is comparable to other known cas
and consistent with the usual 20% accuracy of the crit
density@5#. The equations are too complex to get a dee
theoretical understanding of this seemingly erratic jump
of the transition temperature, dependent on the approxi
tion we are using. Particularly, the fact that the vertices@Eq.
~12!# are not positive anymore makes an analytical pred
tion impossible. But it is at least possible to rationalize t
behavior using a combination of physical and mathemat
arguments. First of all, it is quite clear that the full diagon
ization where all matrices are assumed to be diagonal is
crude to describe the coupling of TDOF and ODOF for t
system of diatomic molecules. The TDOF and ODOF

only coupled via the diagonal memory functionF l l 8
maa8(q).

The coupling of the equations for differentl is considerably
reduced compared to the case whereS(q) is taken to be
nondiagonal. For example, in theF 00

mTT(q) component of the
memory matrix, only terms of the form~symbolically!

( l 8,m8Vl 8
m8(Fl 8 l 8

m8 )2 appear in the full diagonalization approx
mation, since the Clebsch-Gordan coefficien
C(0l 8l 9,0,m8,m9), which enter into the vertices@cf. Eqs.
~10!–~13!#, are nonzero forl 85 l 9 only. Similarly, the

memory functionalF 11
maa8(q) only contains couplings of the

form F00
0 F11

m and F22
mF11

m . For F 22
maa8(q), the Clebsch-

Gordan coefficients in the vertex allow ‘‘self’’-coupling
(F11

m )2, (F22
m )2, and couplings tol 50 in the formF00

0 F22
m ,

but no ‘‘self’’-couplings (F00
0 )2. Due to the absence o

(F00
0 )2 in F 22

maa8(q), a freezing of the center-of-mass m
tion, i.e.,l 5 l 850, does not imply a freezing for quadrupol
dynamicsl 5 l 852. If the vertex for the coupling of the NEP
with l 52 and l 50 in F11

m andF22
m is not large enough, ex

actly this structure of the memory matrix allows generica
a separate transition of thel 50 and thel 5” 0 components of
the diagonalized dynamic structure factor as observed
@58#. But we have to stress that the approximation is
inadequateper se. In the case of water@51#, the full diago-
nalization approximation leads to a rather satisfactory ag
ment with simulations, without the artifact of separate tra
sitions and too low transition temperatures. The pronoun
angular dependence of interaction between water molecu
which is reflected in the fact that the static structure fact
for l 52, m50,1,2, andl 50 are of the same order, yield
large enough vertices to produce a single transition temp
ture of the TDOF and ODOF. In the present case, the st
ture factorS00

0 is clearly more dominant thanS22
m ~see Fig. 2!.

This is different from water, where allm for l 5 l 852 are
important. This leads to thea posteriori conclusion that in
general the full diagonalization can only be used~if at all! for
systems with ‘‘very strong’’ static translation rotation co
pling. This statement, unfortunately, cannot be further qu
tified.

If we now take the nondiagonality ofS(q) seriously but
leave all other matrices diagonal@case~i!#, additional cou-
pling between TDOF and ODOF appears, which may lead
an effectively stronger coupling. Although the equations
the differentl components of the NEP still couple only v

the diagonal memory functionsF l l
maa8(q), the diagonalized
y

l
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memory matrix contains nowstatic couplings betweenall

NEP. For example,F 11
maa8(q) contains additional couplings

between the TDOF correlatorF00
0 and the correlators involv-

ing l 52 and, even more important, ‘‘self-coupling’’ term
(F00

0 )2 due to the nonvanishing structure factorsS10
0 and

S12
m (q), respectively. This of course does not explain, but

least makes plausible the dramatic increase of the trans
temperature. Any slowing down of, say, the TDOF is imm
diately transferred to all other degrees of freedom and cau
a further slowing down of the TDOF due to the feedback
the memory function. This enhances the tendency towa
vitrification and also is responsible for the existence o
single transition temperature.

The reason for the decrease of the transition temperat
when we give up the diagonalization approximations
F(q) andF(q) @case~iii !#, is not obvious. We only note tha
the transition temperature is decreasing from case~i! (Tc
51.4) over ~ii ! (Tc51.38) to ~iii ! (Tc50.752), i.e., the
more off-diagonal elements of the matrixF are taken into
account.F is the t→` limit of the memory matrix, i.e., the
random force correlation function. Therefore, it seems t
the more components of the random forces are coupled,
lower is the transition temperature. This implies that t
more the random forces can mutually influence each ot
the more difficult it is to form a glass. Although we cann
prove this statement on mathematical grounds, it describ
feasible physical phenomenon.

To test the sensitivity of our results to changes in t
cutoff, we also solved the MMCT for upper cutoffl co54.
The larger cutoff value forl reduces the transition tempera
ture further towards the simulation result. Forl co54, an up-
per and a lower bound forTc have been determined. Th
lower bound is the highest temperature for which the N
are still nonzero after 88 iterations. The upper bound is
temperature for which the NEP are converging to zero a
about 24 iterations. Since the time per iteration increa

FIG. 2. A selection of structure factorsSll 8
m (q) of a liquid of

diatomic molecules in theq frame at temperatureT50.7521 and
pressurep51 in Lennard-Jones units. The full curve is the structu
factor S00

0 (q), the long dashed curve isS22
0 (q), the dotted curve is

S22
1 (q), the dashed-dotted curve isS22

2 (q), and the short dashed
curve isS02

0 (q).
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FIG. 3. Normalized diagonal elementsf l l
m(q) of the nonergodicity parameter matrix. As normalization, the corresponding diag

elements of the static structure factor are used. Shown are the elements for (l ,m)5(0,0) ~a!, (l ,m)5(1,0) ~b!, (l ,m)5(2,0) ~c!, and
( l ,m)5(2,1) ~d!. The full line is the result of the simulation atT50.477 obtained by fitting a von Schweidler law plus corrections of or
(t/ta)2b to the simulation data. The estimated critical temperature isTc50.475. The long dashed line is the result of the fixed-point iterat
for upper cutoffl co52 atT50.7521 slightly below the theoreticalTc50.752 15. The short dashed curve is the result of the quasistatio
criterion for upper cutoffl co52 atT50.7522 slightly above the theoreticalTc . The dashed-dotted curve is the result of the quasistation
criterion for upper cutoffl co54 at T50.630~above the theoreticalTc) for l co54.
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ll
dramatically upon increasing the upper cutoff, the transit
temperature could only be determined within 5%,Tc

50.61. It is encouraging that the real transition is a
proached upon increasing the cutoff, but our arguments
sented above show that this is not necessarily the c
Which of the competing mechanisms influencing the tran
tion temperature is dominant cannot be predicted on gen
grounds.

B. The nonergodicity parameters

In the following, we concentrate on the results for t
normalized NEPf l l 8

m (q)5Fll 8
m (q)/ASll

m(q)Sl 8 l 8
m (q) without

any diagonalization approximation. Figure 3 shows the n
malized diagonal terms of the matrix of NEPf l l

m(q) for
( l ,m)5(0,0),(1,0),(2,0),(2,1). Not shown are the resu
for ( l ,m)5(1,1),(2,2), since they do not exhibit very muc
n

-
e-
e.

i-
ral

r-

structure. The corresponding simulation result is taken fr
@57#. It was obtained by fitting a von Schweidler la
plus corrections Sll 8

m (q,t)5Fll 8
m (q)2Hll 8

m (q)(t/ta)b

1(H (2)) l l 8
m (q)(t/ta)2b to the simulation results for the time

dependent density correlation functionSll 8
m (q,t), whereta is

the a-relaxation scale. There are three different theoreti
curves. The two curves at temperaturesTc50.7522,0.7521
are obtained with the fixed-point method~on the glass side o
the transition! and the quasistability criterion~on the liquid
side!, respectively, as described above for upper cutoffl co
52. Their good agreement demonstrates the high accu
of the solution. The third theoretical curve shows the res
for upper cutoffl co54 using the more accurate quasistabil
criterion. Compared to the results in@58#, a clear improve-
ment of the agreement with simulations can be observ
Especially, theq dependence of the functions is very we
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reproduced. Even a feature like the prepeak inf 00
0 (q) at q

;2.5 is reproduced as a shoulder in the corresponding th
retical result. This peak is not present in the static struct
factors. SinceS11

0 (q) has a peak at aboutq;2.5, it could
appear due to a dynamic coupling of the ODOF, especi
the one involvingl 51 and the TDOF. Note also that th
mentioned peak exactly corresponds to the first peak
f 11

0 (q). There is a tendency that the agreement is best aro
the wave vector, where the structure factorS00(q) has its first
peak and is getting worse for large wave vectors. This mi
be interpreted as an indication for the glass transition be
driven also for the investigated system of diatomic molecu
by the TDOF. From investigations of other system
@46,49,50#, we know that different scenarios are possible.

Similar to increasingq, the agreement between simulatio
and theory gets worse with increasingl. This is expected due
to two different reasons. First, higherl correspond to a
higher angular resolution and are therefore probably m
more affected by the mode-coupling approximation. Seco
higher l are of course much more sensitive to the cutoffl co
than lowerl. The curves for larger cutoff increase the qual
of the comparison with the MD results. But it is important
note that in our case no general rule can be given as to
much the quality of the results for lower values ofl can be
improved by increasing the upper cutoff, as this was don
@32#. In the case of a single dumbbell in a liquid of ha
spheres, the glass transition temperature is completely d
mined by the hard-sphere liquid and does not change
increasing the cutoffl co. As explained above, in our caseTc
can depend very sensitively onl co. But this influences di-
rectly the amplitude of the NEP via the trivial effect of th
temperature on the static structure factors. We already c
pensate as much as possible for this mechanism by pre
ing only the normalizedNEP. But as in the case of har
spheres, there is still the effect that also the normalized N
are proportional to the static structure factor. This is a v
nontrivial phenomenon, since the existence of negative
tices in the mode-coupling functionalF(q) could in prin-
ciple lead to a violation of this correlation. But as can
inferred from Fig. 3, the NEPf 00

0 (q), f 22
0 (q) for l co54 are

systematically larger than that forl co52 in a large region
around the first peak of the structure factorS00

0 (q), without
big differences in the functional form. This effect, especia
for F00

0 (q) where the mentioned trend is valid for all wav
vectors, can be mainly understood as a consequence o
transition temperature being smaller forl co54 than for l co

52, which causes the first peak ofS00
0 (q) to increase. Addi-

tional evidence for this reasoning is presented in Fig. 4
this figure, we show the results forl co54 at temperatureT
50.60, obtained with the fixed-point method, andT50.63,
obtained with the quasistability criterion. The lower tempe
ture is still in the glass~the required accuracy, i.e., the max
mum difference between consecutive iterates, which
smaller than 1026, is reached after 88 iterations!. At the
higher temperature, the accuracy is first increasing as
pected~see the Appendix!. But after 24 iterations, it begin
slowly to decrease and after 42 iterations the iterates sta
converge quickly towards the solutionF(q)50. The results
for the lower temperature agree, except forl 50, much better
with the simulation than the one for the higher temperatu
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But since the deviations to the true critical NEP at rough
the same number of iterations are of orderuT2Tcu for the
higher temperature compared to orderAuT2Tcu for the
lower one, we have to conclude that the results for the hig
temperature are closer to the critical NEP of the theory. T
better agreement with simulations of the NEP atT50.600 is
a trivial consequence of the fact that positive NEP incre
with decreasing temperature. Due to this influence of
value ofTc on the amplitude of the normalized critical NEP
we cannot in general conclude that increasing the cutoffl co

leads to a better agreement with the simulation. It might e
happen that the agreement with simulations gets worse
stead of better, if increasing the cutoff would lead to a larg
transition temperature. This is possible due to the existe
of negative vertices in the mode-coupling functionalF.

The observed trends allow the reasonable hypothesis
the temperature effect could be the main source for the
viations between simulation and theory. In general, the m
structural features in the normalized nonergodicity param
are very well represented, but they are systematically
small for nearly all wave vectors, exactly as expected, if
theoretical transition temperature is too large.

Figure 5 demonstrates that the theory also gives good
sults for the off-diagonal NEP. We found thatS02

0 and F02
0

are the only important off-diagonal components of the sta
structure factor matrixS(q) and NEP matrixF(q), respec-
tively. In Fig. 5, we therefore show the normalized NEPf 02

0 .
The quality of the result is even better than for the diago
components of the NEP.

C. Critical amplitudes

The critical amplitudes are determined only up to an ov
all scale factor. That is, our theoretical results cannot be
rectly compared to the simulation results. But once we h
chosen a scale factor for, e.g., the amplitudeh00

0 , all other
amplitudes should be multiplied with the same scale facto
compare with the simulations. In Fig. 6~a!, we have chosen a
scale factor of 200 to obtain the best agreement with
normalized critical amplitudeh00

0 (q)5H00
0 (q)/S00

0 (q). The
features of this component are the same as in simple g
forming systems@65–67,4#. There is a minimum at the po
sition of the first peak ofS00

0 (q). Simulations and theory
compare quite well for 2<q<7 and show deviations at othe
wave vectors. With the chosen scale factors, the other d
onal elements of the critical amplitude matrix show stro
deviations from the simulation results. Especially,h11

0 (q)
@see Fig. 6~b!# does not even disagree in amplitude nor in t
form, except for the minimum atq;3. This is not unex-
pected, since the simulations have shown strong differen
between the form of the dynamic correlators involving o
and evenl @57#. Due to the weak top-down anisotropy of ou
diatomic molecules, the dynamic of the correlators involvi
odd l is only weakly coupled to the dynamics of the ev
components@43#. 180 ° jumps are still possible on a muc
faster time scale than the translational motion@57#. Conse-
quently, there are strong corrections to the asymptotic res
for the correlatorS11

0 (q,t) and the amplitudeh11
0 (q) is not

very well defined.
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FIG. 4. Normalized diagonal elementsf l l
m(q) of the nonergodicity parameter matrix forl co54 obtained with the fixed-point method an

stationary criterion, respectively, in comparison with simulation. As normalization, the corresponding diagonal elements of th
structure factor are used. Shown are the elements for (l ,m)5(0,0) ~a!, (l ,m)5(1,0) ~b!, (l ,m)5(2,0) ~c!, and (l ,m)5(2,1) ~d!. The full
line is the result of the simulation atT50.477. The long dashed line is the result of the fixed-point iteration for upper cutoffl co54 at T
50.600. The short dashed curve is the result of the quasistationary criterion for upper cutoffl co54 at T50.630.
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The deviations between simulation and theory inh22
0 @see

Fig. 6~c!# are more serious, sinceS22
0 (q,t) exhibits a well-

definedb region. We can improve the agreement betwe
simulation and theory by choosing a free scale factor for
simulation curves. The result is shown in Fig. 6~d! to dem-
onstrate, in contrast toh11

0 , that essential structural feature
in h22

0 are indeed reproduced by the theory. As argued ab
the dynamic correlators and therefore also the critical am
tudes involvingl 52 are much more affected by the cuto
l co52 than the one with lowerl. This might be the reason fo
the rather large discrepancy found forh22

0 . To determine the
critical amplitudes, it is necessary to be very close to
critical point. Restriction in computer time did not allow u
to determineTc for l co54 with high enough accuracy to ge
reliable results for the critical amplitudes.

The critical amplitudes withm.0 do not exhibit very
much structure. In Fig. 7, we show for completeness
result for h22

1 (q), which could in principle be measured i
light scattering experiments. Again we choose an overall a
n
e

e,
i-

e

e

-

plitude prefactor as a free fit parameter, but the agreeme
still not very good. Much better is the agreement~similar to
the NEP! for h02

0 ~see Fig. 8!, although we still had to choos
the amplitude scale of the simulation as a free fit parame

IV. CONCLUSIONS

We have performed a quantitative test of MMCT for
liquid of diatomic molecules. The static structure facto
from simulations were used as input for the MMCT to ca
culate the critical temperatureTc , the matrix of critical NEP
Fll 8

m (q), and the matrix of criticalb-scaling amplitudes
Hll 8

m (q). Several approximation schemes were used to
the sensitivity of the results against changing the degree
diagonalization of theFll 8

m (q) in l andl 8 and the dependenc
on the upper cutoffl co. As maximum cutoff,l co54 was
used. Since the computational effort increases strongly w
l co, we used a more accurate method to determine the cri
NEP from the liquid side of the transition.
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As expected, by giving up any diagonalization appro
mation for Sll 8

m (q), Fll 8
m (q), and the memory functiona

Fl l 8
maa8(q), all degrees of freedom vitrify at a single temper

ture. In fact, to obtain a unique transition temperature, i
sufficient to keep only the static structure factorSll 8

m (q) non-
diagonal in l and l 8. The strongest effect of successive
applying diagonalization approximations for the NE

Fll 8
m (q) and the memory functionalF l l 8

maa8(q) is the change
of the transition temperaturesTc . Also using different cut-
offs l co changes the transition temperature.

Contrary toTc , the overall form of NEP is much les
sensitive to the different approximation schemes. The ag
ment with simulation is qualitatively quite good for cuto
l co52 as well as forl co54. In some cases, especially for th
l 50,l 850 component and the off-diagonall 50,l 852 com-
ponent of the NEP, the agreement is even quantitative
wave vectors around the first peak of the structure fac
S00

0 (q). The comparison of the NEP with simulations for th
correlator with (l 50,l 850) is clearly improved using the
cutoff l co54 instead ofl co52. Other correlators are bette
represented forl co52. We therefore cannot conclude that
general a further increase of the cutoff will lead necessa
to still better agreement with simulations.

Also the wave-vector dependence of the normalized c
cal b-scaling amplitudes agrees quite well with the one o
tained from simulations. Contrary to the prediction
MMCT, no common amplitude scale for the critical amp
tudes with differentl and l 8 could be found. At present, it is
not clear whether this failure is real or due to the fitti
procedure used in@57# to obtain the beta relaxation ampl
tudes. Also the restriction to cutoffl co52 for the determina-
tion of the critical amplitudes could cause the found discr
ancies, since also correlators withl .2 will contribute to the
critical amplitudes atl 52. By neglecting them, an error i
the amplitude scale is possible.

In summarizing our study, we may say that the MMC

FIG. 5. Normalized off-diagonal elementsf 02
0 (q) of the noner-

godicity parameter matrix. As normalization,AS00
0 S22

0 was chosen.
The full line is the result of the simulation atT50.477. The long
dashed line is the result of the fixed-point iteration for upper cu
l co52 at T50.7521. The short dashed curve is the result of
quasistationary criterion for upper cutoffl co54 at T50.630.
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offers an overall consistent description of the glass transi
in molecular liquid of diatomic molecules, at least conce
ing the critical NEP and the critical amplitudes.
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APPENDIX: DETERMINATION OF THE NEP USING
QUASISTABILITY

If the temperature is chosen above the critical tempe
ture, the only stable fixed point of the iteration~15! is F
50. But there is still the possibility of determining the crit
cal NEP with even higher accuracy than with the converg
iteration for T,Tc . To implement the method, we have
initialize the iteration withFm

(0) , which is close toFm
c , where

m is a superindex forq, l, l 8, andm. This can be achieved by
first using the fixed-point iteration

Fm
(n11)5Gm~$Fm8

(n)%,e! ~A1!

belowTc and increasing the temperatures in small steps u
the liquid regime is reached. The critical temperature w
eventually be missed by a small value 0,2e!1 and the
iteration converges after along transient quickly to zero.
Since the iteration at a given temperature is always init
ized with the final result of the previous temperature, t
above assumption is fulfilled. The long transient is caused
the marginal stability of the critical point. The iteration wi
be dominated for a long time by the critical direction of th
iteration, which is given by the eigenvectorec, which be-
longs to the eigenvalueE051 of thecritical stability matrix
(Cmm8

c )5(]Gm /]Fm8)
c @61#. The NEPF̂m(e) at which the

iteration is almost stationary is given by minimizing the d
tance of the projection ofDCm5Gm($Fm8 ,e%)2Fm on the
critical directionêc, where for technical reasons theleft criti-
cal eigenvectorêc was chosen. This condition can be writte
as

](
m

êm
c DCm

]Fm8

5(
m

êm
c Cmm8~$F̂m9%,e!2êm8

c
50. ~A2!

Equation~A2! determines the quasistationary pointF̂m(e),
such that matrixCmm8($F̂m9 ,e%) has an eigenvalueÊ0(e)
51 for e,0. e,0 indicates that the temperature isT
5Tc(12e).Tc . This stationary pointF̂m differs from Fm

c

in ordere. This can be proven by using an argument ana
gous to deriving theb-scaling equation@6#. Defining d̂m by
F̂m5Fm

c 1 d̂m and using the property thatCmm8($F̂m9%,e) is a
smooth differentiable function ofe, Eq. ~A2! can be written,
in leading order ind̂m ande, as

05(
m

êm
c S (

m9
Cmm8m9~Fc,0!d̂m91

]Cmm8~Fc,e!

]e U
e50

e D .

~A3!

f
e
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FIG. 6. Normalized diagonal elementshll
m(q) of the matrix of critical amplitudes. As normalization, the corresponding diagonal elem

of the static structure factor are used. The result of the simulation atT50.477 is obtained by fitting a von Schweidler law plus correctio
of order (t/ta)2b to the simulation data. The fits to the simulations~full lines! are multiplied with a factor 200~see text for details! to obtain
the best agreement with the theoretical result forh00

0 (q). Shown are the theoretical results forT50.7521, upper cutoffl co52. ~a!–~c! show
the results for (l ,m)5(0,0), (1,0), and~2,0!, respectively. The dashed curve is always the result of the theory.~d! shows again the sam
theoretical result as in~c!, but the free scale factor of the critical amplitude of the simulation is chosen to optimize the agreement with
~see text for details!.
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Here we have in addition used thatêm
c is the left eigenvector

of the stability matrix at the critical point with eigenvalu
E051. The tensorCmm8m9 is the partial derivative of the
stability matrix with respect toFm9 . Equation~A3! immedi-
ately shows thatd̂m is ~at least! of order e. Note that the
argument crucially depends on the well-known phenome
that static quantities such as the structure factors, which
termine completely the stability matrix (Cmm8($Fm9%,e), are
varying smoothly across the glass transition.

We now want to estimate the number of iterations
quired to approach the quasistationary pointF̂. For that mat-
ter, the iteratesFm

(n) are expanded around the quasistation
point

Fm
(n)5F̂m1dm

(n) .
n
e-

-

y

Neglecting terms of order (dm
(n))3, the iteration~A1! can be

rewritten as

dm
(n11)5DĈm1Ĉmm8dm8

(n)
1 1

2 Cmm8m9dm8
(n)dm9

(n) , ~A4!

where the quantities with a caret are taken at ($F̂m9%,e). The
slowing down of the iteration is due to the component ofdm
along the critical directionec. This component can be ex
tracted by writingd (n)5a(n)ec and multiplying Eq. ~A4!

with the left eigenvectorêc of the stability matrixC. The
resulting equation fora(n) is then

a(n11)2a(n)5s1~l21!~a(n)!2. ~A5!

Here we made use of Eq.~A2! and have normalizedec,êc

such that(mêm
c em

c 51. The quantitiess5(mêm
c DCm and l
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511(mêm
cCmm8m9êm8

c em9
c can be identified as the separatio

parameter and the exponent parameter 0,l,1 of the
b-scaling theory, respectively@6,68#. Since consecutive iter
ates are very close to each other in the vicinity ofF̂, we can
rewrite Eq.~A5! as a differential equation,

2ȧ5@ usu1~12l!a2#. ~A6!

Let us assume we start the iteration att50 with a(0)
5a0 . Then the solution of Eq.~A6! is

a~ t !52
Ausu

A12l
tanFA~12l!usut2arctanS a0

A12l

Ausu
D G .

~A7!

FIG. 7. Normalized critical amplitudeh22
1 (q). The critical am-

plitude of the simulation~full line! is multiplied with a free scale
factor to optimize agreement with theory~see text for details!.
Shown is the theoretical result forT50.7521~dashed line!.
de
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Since the iteration is initialized with a value forF slightly
in the glass, the initial deviationa0 from F̂ is of order
Ausu5O(Aueu). From Eq.~A7! it then follows that we need
a number of iterations of the order 1/Aueu to approachF̂ @i.e.,
a(t)50#, and will stay close toF̂ @i.e., a(t)<O(Ausu)] for
the same amount of iterations before the iterates deca
zero. This proves our statement that the quasistationary
lution of the iteration forT.Tc is approached with the sam
amount of iterations as the stable solution slightly belowTc .
But there the glass solution agrees withFc only up to order
Ae. The quasistationary solutionF̂, however, agrees withFc

up to orderueu!Aueu.

FIG. 8. Normalized critical amplitudeh02
0 (q). The critical am-

plitude of the simulation atT50.477~full line! is multiplied with a
free scale factor to optimize agreement with theory~see text for
details!. Shown is the theoretical result forT50.7521~dashed line!.
Since the raw data of the simulations had to be smoothed, the
points are omitted.
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