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We study the molecular mode-coupling theory for a liquid of diatomic molecules. The equations for the
critical tensorial nonergodicity parameté?g',(q) and the critical amplitudes of the reIaxationleln,(q) are
solved up to a cutoff.,=2 without any further approximations. Helrgn are indices of spherical harmonics.
Contrary to previous studies, where additional approximations were applied, we find in agreement with simu-
lations that all molecular degrees of freedom vitrify at a single temperatur@ he theoretical results for the
nonergodicity parameters and the critical amplitudes are compared with those from simulations. The qualitative
agreement is good for all molecular degrees of freedom. To study the influence of the cutoff on the nonergod-
icity parameter, we also calculate the nonergodicity parameters for an upperlgytoff In addition, we also
propose a method for the calculation of the critical nonergodicity parameter from the liquid side of transition.

PACS numbegps): 61.25.Em, 64.70.Pf, 61.43.Fs, 61.20.Ja

I. INTRODUCTION tional degrees of freedofDOF), i.e., the center-of-mass
motion. But of course, when comparing experimental results
The mode-coupling theoryMCT) of the glass transition on complex systems with predictions of the MCT for simple
is by now an important tool to understand experiments in andiquids, it was always reasonable to argue that there are in
simulations of supercooled liquidi4]. For a long time, most every experiment couplings to the center-of-mass motion.
of the theoretical investigations concentrated on simple monFor example, reorientation of dipoles measured in dielectric
atomic or binary liquids. All universal and even system-loss measurements can be induced by the center-of-mass mo-
specific predictions of these investigations could be tested otion via a translation-rotation coupling. Also the reorienta-
aquantitativelevel in a system of hard colloid®,3], which  tion of the polarizability tensor in light scattering measure-
is an excellent realization of a hard-sphere system, and iments is related to a physical rotation of the molecules and
computer simulations for a binary Lennard-Jones systenwill therefore be coupled to the center-of-mass motion of the
[4,5]. Details of theory and tests for simple glass formers camolecules as well. A slowing down of this motion due to
be found in review articlef6—12] and articles cited therein. very slow structural relaxations can consequently also indi-
Although the theory was originally formulated only for rectly be measured in the mentioned experiments. In addi-
these simple systems, most of the experimental and simulaion, it is perfectly justified to perform tests of thmiversal
tion support came from research on much more compleypredictions of MCT in complicated molecular and polymeric
systems [e.g., triw-naphtylbenzene[13], Orthoterphenyl systemdg41] for 8-scaling laws and properties of there-
(OTP) [14-17, 0.4Ca(NQ),0.6KNO; (CKN) [18-21, laxation, such as the time temperature superposition prin-
Glycerol [22-24, Salol [25-27, toluene[28], and water ciple and wave-vector-dependent stretching exponents, since
[29,30]. Also most of the experimental methods used didthe underlying universal features of the bifurcation scenario
not measure density correlation functions or their susceptishould also remain valid for molecular systems.
bilities, for which the original theory was formulated. Even  But beyond the universal aspects, MCT aims to be a mi-
neutron-scattering experiments in systems consisting of mokroscopic theory of structural relaxation. This goal is to a
ecules whose components have different cross sections ftarge extent achieved for simple liquids. There it was pos-
neutrons[17,23,2§ do not measure the density correlation sible to obtain quantitative agreement between experiment
function exclusively, but rather a mixture of more compli- and theory for the full dynamic range of structural relaxation
cated correlation functions involving molecular degrees ofii.e., 8 and a region [2,3,5. Recently, also a theory for
freedom[31] (see also[32] for a single linear molecule  anomalous high-frequency oscillatiofBose peak phenom-
Dielectric loss measuremenf1,24] measure directly the enon was formulated within MCT[42]. The molecular
correlation function of a tensor of rank 1. Depolarized light mode-coupling theoryMMCT), which has been under study
scattering[14,19,25,33 Kerr effect experiment§34,35, for a few years now, intends to extend this line of research to
nuclear magnetic resonan@6—38, and electron-spin reso- experimentally relevant molecular systems. There are three
nance 39] (and references thergimeasure correlation func- different mode-coupling theories for the description of dif-
tion of a tensor of rank 2. The mentioned tensorial quantitieserent aspects of molecular degrees of freedon{.3@43,
are all related to orientational degrees of freed@DOF, the motion of a single linear molecule in a liquid of spherical
whereas the original theorf40] only considered transla- atoms is studied. Ip44], a site-site description is formulated,
which is perfectly adapted to study neutron-scattering experi-
ments of molecular systems. In this approach, the atomic
* Author to whom correspondence should be addressed. structure of the molecules is considered. Finally, the MMCT
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[45] that we are using in this world6] is devised to inves- in [46] and[47], respectively. We only repeat the basic defi-
tigate the dynamics of a liquid of linear molecules. For thisnitions and equations and refer the reader for details to the
purpose, a self-consistent mode-coupling theory for the dylterature. For the present work, in which we want to calcu-
namic correlation functions of tensorial densitigs,(q,t) late the critical NEP and the critical amplitudes of diatomic
was developed. These densities are the generalized Fourigolecules, we only need the equations for linear molecules

components of the microscopic densitfx,2) in an expan- i the limit of time to infinity. The basic quantities are the
sion in spherical harmonics with respect to the orientatiorcorrelation functions of tensorial densitipg,(qg,t) and ten-
O =(0,¢) of the molecules and plane waves with respect tosyial current densitieg, (q,t)

X. An extension to arbitrary molecules is given[i7]. A

theory for arbitrary molecules was also formulated 418]. R N -

First results for the tensorial nonergodicity paramethisP) pim(G,0) = \Ami' X, ey (D). 1
and critical amplitudes were obtained for dipolar hard n=1

sphereg[46] and [49], respectively. A study of the phase N

diagram for glass transitions of a liquid of hard ellipsoids N 0 R 2

was performed in Ref50]. Several aspects of the theory for Jin(a,0) = VA nzfl o€t O (Qg(1)). 2
general molecules were tested against simulation for water in

51(3753.[51,52 and treating water as a linear molecule in Ref'TheY|m(ﬁn(t)) are the standard spherical harmonics and we
' follow in our notation the textbook by Gray and Gubbins

As in the MCT for simple liquids, the static structure e -
factorsS(q) in the g frame, i.e., the coordinate system in [59]. vy is either the center-of-mass velocity(t) of thenth

which thez axis is along the wave vector, completely deter-molecule or its angular velocity,(t) depending on the in-
mine the long-time dynamics and thus the NEP and criticaHex a:
amplitudes. Note that the structure factgssatic and dy-

namig are diagonal inm in the g frame [46]. The static - Jn(t), a=T
structure factors have to be known to solve the equations of vn(t)=4 . 3 €)
MMCT. They are either obtained by analytical theories as, on(t),  a=R,

e.g., In Refs[53-53 for ellipsoids or they have to be taken whereT andR stand for the translational and rotational part,

from simulations. In this work, we present a detailed com- . . SR
parison of MMCT calculations of the NEP and critical am- respectively. For the calculation of the NEP, we need in prin-

plitudes with the results of simulation for a liquid of di- CiPle all spatial components of the currents but here we use
atomic molecules. A detailed description of the system and@S in[46] only the projection on directions defined by the
the simulation can be found if66,57. There, tests of the wave vectorg and the angular momentum operakar Tak-
universal properties of MCT are also presented. For our coming into account also transversal currents will lead only to a
parison between simulation and theory, the static structuremall correction in the NEP60]. We therefore define the
factors are taken from the simulation. In a preliminary study jongitudinal currentsj &, (q,t),
only the diagonal static correlato®]'(q) were used as input
and also the dynamical correlat®$(q,t) and thus the NEP . 1 . . .
were assumed to be diagorf&8]. This severe approxima- Jim(@)=—(q*“)m(d), ae{T,R} (4)
tion has led to unphysical results such as the existence of two q
different transition temperatures for ODOF and TDOF. In_ .
. : with

our study, we use diagonahd nondiagonal elements of the
static structure factor as input to calculalé components of
the NEP and, in addition, of the critical amplitudes. For the qf’(q)::[
calculation of the NEP, we also extend the necessary upper
cutoff | ., for the index| to | .,=4.

The paper is organized as follows. In Sec. Il, we review
the main equations and concepts for the calculation of the [ -

q, a=T
VI(I+1), a=R ©

and the definition

critical NEP (Sec. Il A) and the critical amplitudegSec. ~o |G a=T ©)
[IB). In Sec. lll, we discuss the influence of different ap- q:= L, a=R
proximation schemes on the theoretically obtained critical

temperaturegSec. Il A) and their relation to simulation re- The quantities we are going to calculate are I\FE;F,’(q) in

sults. Then we present the comparison of theoretical critica{he S ; : : .
. X . g frame, i.e., in a coordinate system in which thaxis is
NEP (Sec. lIB) and critical amplitudegSec. 1110 with iven by the direction of the wave vect&r:(o 0g). In this

simulations. Conclusions are presented in Sec. IV and afl dinat ¢ I lati functi
Appendix describes how the critical NEP can be obtainecfofr nate system, g correla |_on u_nc 1ons
from the liquid side close the the ideal glass transition.  {(Pim(d.)p1'm/(9.0))= mw Sy, (q,t) are diagonal inm.
They are real and depend fm| only. The same holds for all
Il. MOLECULAR MODE-COUPLING THEORY other tensorial quantities that we will use in thérame. The
A. Nonergodicity parameter NEP are given by
The derivation of the equation of MMCT for the dynam- Fi(a)=1
t

_ _ imSy,(q,t). 7
ics of linear molecules and general molecules can be found o

—
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As input for the mode-coupling equations, we need they® | (q,q;,9,;m,m;,m,)
static structure factorS][,(q). They are directly taken from  *°

the simulation of Kenmereret al.[57]. The system, investi- g, 2l D2+ 1) vz, L (— 1)+t
gated there, is a one-component system of rigid diatomic =l (21+1) 2[1+(=1) ]
molecules. Each molecule is composed of two different
Lennard-Jones patrticles, denotedAwndB. They have the aamiglt P
same mass and are separated by a distahe®.50 54, Xm%, (=1 2dm1m1(®ql)dmém2(®q2)
where o, is the Lennard Jones parameter of atdmThe e
interaction between two molecules is given by the sum of the X C(I415l;mimym)
interaction between the four particles, which is given by the
Lennard-Jones  potential V, 4(r)=4e, gl(,5/r)" 01 c0s04 C(l14121;000; a=T 13
_ -6 i X
(04,5/r)" "], wherea, 8 e {A,B}. The exact choice of the 0,71 C(1,1,1:10); a=R.

simulation parameters can be found %i6]. The off-diagonal
elements of the static structure factors were not yet published pgre the function<C(l41,;m;,m,,m) are the Clebsch-
and had to be determined from the raw data.

The equation for the matri¥(q)=F ], (q) of NEP can
then be writter{46] as

Gordan coefficients and'm,m((ﬁ)) are related to Wigner's
rotation matricegwe follow the notation of Gray and Gub-
bins). For given Euler angleQ =(®,0,y), they are defined
as[59]
F(a)=[1+K()S *(a)] 'S(q). ®) | _imay i

D,y(Q)=e"md__(@)eMx, (14)

mm’

The matrixC is related to the Laplace transform of the ~ ©g, is the angle betweeq andq; . The prime at the first

dynz_:tmic current correlation fu1jction and can be expressed agmmation in Eq(10) restrictsﬁl,ﬁz such thaﬁﬁg]z:ﬁ-
the inverse of a memory matri™(q)=7,,(q) att=co, Equations (8)—(10) form a closed set of infinitely many
coupled nonlinear equations for the NEP. To obtain a solv-
able theory, we have to restricto be smaller than an upper
m, > @ my o —1qea’ o' cutoff, I=<I.,. The resulting equations can in principle be
IC”,(q)—z,, A (@LF @y g (a) © solved by a fixed-point iteration algorithm. Physical control
parameters such as the temperature and the density only en-
ter via the static structure factor. At a critical temperature or

The mode-coupling approximations yield density, the solution of this equation bifurcates from all func-
tions FlT,(q) being zero to nonzero. In the simulations of
o 1 po\2 , :(almmererett al. [C5:|6,57_|,tthfhtertnpera_1tt_ure tWas uset% astﬁ con-
@y~ [ 2 ! aa rol parameter. Close to the transition temperatlige the
Fir (@ 2N(47T) %‘2 m%z %:2 E‘z Vi stabﬁity matrix of the iteration(see below V\F/)ill ha\fe the
" . largest eigenvalu&, approaching=,=1 from below. Con-
><(q,ql,qz;m,ml,mZ)FIllli(ql)Flzlzé(qz), sequently, the convergence of the iteration is very slowly

getting close tdT;. The time for one iteration depends very
(10 sensitively on the upper cutoff,. Forl,=2, one iteration
took 10 min on a MIPS R10000; fdr,,=4 this time in-
_ creased to 6 h. We therefore concentrated ga 2 to deter-
with mine the transition point with a high accuracy and used the
calculation forl .,=4 mostly as a check for the sensitivity of
wa! our results against changing the cutoff.
V,,,,l|i|2,é(q,Q1,Qz;m,mlymz) To overcome some of the restrictions connected to the
critical slowing down of the convergence close g, we
:=U|0|‘1|2(q,ql,q2;m,ml,mz)vlal/l/l/(q,ql’qz;m,ml,mz)*’ determi-ned the critical NEP, i.e., the NEP-H:I, W|th tWO
12 alternative methods. For the standard fixed-point iteration we
(11 started at a temperature low enough to be in the glass state.
Then the temperature is increased very slowly. At every tem-
perature, the equations for the NEP are solved by the itera-

" . tion
vn1|2(q,q1,q2;m,m1,mz)==|2 u||3|2(q,q1,q2;m,m1,m2)
’ FD(q)=G(F"e), (15)
my —_1\m
X0, (00 + (= DL =2), where G(F(M) is the right-hand side of E¢8) and e=(T,
(12) —T)/T.. This iteration converges exponentially fast towards

its solution as long as the temperature is not the critical tem-
perature. The convergence rate is determined by the largest
and eigenvalueE, of the stability tensolC,, = dG, /dF,, [61].
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The index\ is an abbreviation for wave vectogsand rota- 0.05 ' ' ' '
tional indicesl,l’,m. The exponential convergence rate is
then InE,. Close to and below ., the eigenvalu&, can be
written asEy=1—A\/e, with A being a positive constant.
Therefore, the convergence rateAs/e and the number of
iterations to obtain convergence diverges inversely propor- g3
tional to \/e close toT,. With this number of iterations, the
deviations of our NEP from the true critical NEP are propor-
tional to e, since the NEP exhibit the well-known square 0.02
root singularity(cf. [6]).

If the temperature is increased aboNg i.e., e<0, there
is no nonzero solution for the iteration E@5). Neverthe- 0.01
less, for 0<—e<1 the iteration is nearly stationary for a
large number of iterations of the ordksl ~Y2 (see the Ap-
pendiy. The approximate critical NEP is determined as the ~ 009 058 0% 052 052 o056

stationary poinﬂi(e), whose change along the eigenvector T
with eigenvalue 1 of theritical stability matrix is minimal
durlr_lg Itera'glon_. BUI. contrary to the NE.P determlned_ fromstability matrix (see text from its critical valueEy(T.)=1 as a
the fixed-point iteration folf <T., the stationary NEP differ ¢, on of temperature. The full line is a linear fit {IEq)2(T,
only in order| | instead of in order/e from the true critical —T)2 to the data withT.=0.752 15. The inset shows a magnifica-
NEP. Consequently, this property allows us in the followingjon for the same quantity very close T .

to cross-check the very accurate resultslfge2 obtained
from the fixed-point iteration and also to obtain the critical
NEP forl.,=4.

0.04 1
0.001 | .

0.000
2 L L
0749 0750 0751 0752 0753
T

(1-E)°

FIG. 1. The square deviation of the largest eigenvalue of the

order \/e. Due to the difficulties described above, we could
only determine the critical amplitudes for upper cutbff
=2.
B. Critical amplitudes
A central prediction of the mode-coupling theory of the
glass transition in simple liquids is the existence of the
B-scaling regime[62,63,4. For the problem of a single A. The critical temperatures

dumbbell in an isotropic hard-sphere syst¢&®], it was For |,=2 and in the full diagonalization approximation
demonstrated that th@-scaling law can be detected in every [58], in which the static structure factoi¥(q), the glass
quantity that couples to the density. For a liquid of aniso-to;m factors F(g), and the memory matri¥/(q) are as-
tropic molecules, it is not very well defined which degree of 5, med to be diagonal with respectliathe glass transition
freedom is driving the glass transition. The equations Oftemperature for the TDOF predicted by MMCT is below the
MMCT couple all degrees of freedom and there are situag o ngition temperature of the MD simulatioi&'®=0.477.
tions where the transition is not caused by the TDOF bu ote that these temperatures are given in Lennard-Jones
rather the ODOFE.SOJ' But.even n t_hese systems, the facto.r- units (cf. [56]). In all other known examples, the MCT over-
ization theorem IS generically valid for a.II correlators. This estimates the tendency for vitrification. As an additional ar-
can be prove_n using the standard techmc[@sTherefo_re, tifact of the full diagonalization, the ODOF vitrify at a lower
every dynamic structure fact®,(q,t;T) for —1<e<1in temperature than the TDOF. Since the top-down symmetry
the g region can be written as of the dumbbells is broken, the full equations of MMCT
m m m (8)—(10) generically do not allow for such a scenario. As
S (At =F(a@)+H(a)G(t/tg;0). (16 s00n as we tak&(q) nondiagonal, all degrees of freedom
undergo a glass transition at the same temperature above the
The functionG(t/to) is the same for all,I’,m,q. tpisan  MD result. To study the influence of different diagonaliza-
overall microscopic scaléd l",",(q) are the critical amplitudes tion approximations in a bit more detail, we investigated sev-
determining the intensity of the asymptofiescaling law for  eral cases, with the main condition 8fq) being nondiago-
a certain combination df I’, m, andq. Also, the correction nal: (i) F(q) andF(q) diagonal(dd); (ii) F(q) diagonal and
to the asymptotics, which determine, besides the tempera&(q) nondiagonal(dnd); (iii) F(gq) and F(q) nondiagonal
ture, the range of validity of the law E@16), depends on (ndnd.
these amplitudescf. Ref.[64] for simple liquids. Differ- Let us discusd =2 first. For this caseT. has been
ences in the observability of the critical correlators betweerdetermined very accurately from the asymptotic behavior
depolarized light-scattering experiments and dielectric los§1—Ey(T)]?>x ¢ (see Sec. IIB for the largest eigenvalue
measurements can be explained by differences in the ampliy(T). Figure 1 demonstrates this law for caSi). The
tudesH ﬂ‘,(q) involving I =2 andl =1, respectivelysee Ref. highest transition temperature is obtained for cagzeHere
[43] for a single molecule To determine the amplitudes the transition temperature is roughly three times as large as
numerically to a high precision, it is necessary to be verythe MD result, Te’=1.4. In case(ii), it only slightly de-
close to the transition point to make sure that all correctiorcreases tord"=1.38. If everything is taken nondiagonal
terms of ordere are small compared to the leading term of [case (iii)], the transition temperature i§.=0.7521. Al-

Ill. RESULTS
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though still twice as large as the MD result, the discrepancy 3.0
of this result fromT¥'° is comparable to other known cases

|=|'=0, m=0
and consistent with the usual 20% accuracy of the critical I=I'=2, m=0
density[5]. The equations are too complex to get a deeper 5, o :j::jg’ mj; |
theoretical understanding of this seemingly erratic jumping o= 1=0, =2, m=0

of the transition temperature, dependent on the approxima
tion we are using. Particularly, the fact that the vertides.
(12)] are not positive anymore makes an analytical predic-_
tion impossible. But it is at least possible to rationalize the i
behavior using a combination of physical and mathematical
arguments. First of all, it is quite clear that the full diagonal- 0.0
ization where all matrices are assumed to be diagonal is toc

crude to describe the coupling of TDOF and ODOF for the
system of diatomic molecules. The TDOF and ODOF are

Q)

1.0

, -1.0 1 1 1 1
only coupled via the diagonal memory functidﬁrln,‘”’ (q). 0.0 5.0 10.0 15.0 20.0 25.0
The coupling of the equations for differehis considerably 9
reduced compared to the case wh&(g) is taken to be FIG. 2. A selection of structure facto],(q) of a liquid of

nondiagonal. For example, in t]y’ '(q) component of the  diatomic molecules in the frame at temperaturd=0.7521 and

memory matrix, only terms of the fornisymbolicall)  pressurgp=1 in Lennard-Jones units. The full curve is the structure
Ev,m/VW’(Fl”?",)z appear in the full diagonalization approxi- gczor)s%gg)ag;ﬁ;gt‘goizzhis n‘jgr\é (g)Z(q;h;hfhgogﬁgrtcﬂfhfd
mation, since the Clebsch-Gordan  coefficients 22" A4),

C(01'1”,0m’,m"), which enter into the verticefcf. Egs. curve isSg,(q).
(100—(13)], are nonzero forl’=1" only. Similarly, the

memory functional?L‘Tf‘“'(q) only contains couplings of the , . ~ .
NEP. For exampleF{1** (q) contains additional couplings

form FS,FT, and FIFT. For FI¢¢'(q), the Clebsch- )
Gordan coefficients in the vertex allow “self’-couplings petween the TDOF correlatéi), and the correlators involv-

(F™2,  (F™)2, and couplings to=0 in the formFgoFm ing =2 and, even more important, “self-coupling” terms

221 L
but no “self’-couplings (F2)2. Due to the absence of (F3)? due to the nonvanishing structure factd, and

. , : STX(q), respectively. This of course does not explain, but at
04\2 Mmaa 12 ’ '

(.FOO). n j:2,2 (a), a free_zmg of the cgnter—of-mass MO~ |east makes plausible the dramatic increase of the transition
tion, |.g.,| =|"=0, does not imply a freezing for quadrupolar temperature. Any slowing down of, say, the TDOF is imme-
dynamlcsl =|"=2. If themvertex :‘nor. the coupling of the NEP diately transferred to all other degrees of freedom and causes
with =2 andl=0 in F;; andF; is not large enough, ex- 3 fyrther slowing down of the TDOF due to the feedback via
actly this structure of the memory matrix allows generically e memory function. This enhances the tendency towards
a separate transition of the=0 and thel #0 components of = yjitrification and also is responsible for the existence of a
the diagonalized dynamic structure factor as observed iBingle transition temperature.

[58]. But we have to stress that the approximation is not  The reason for the decrease of the transition temperature,
inadequateper se In the case of watef51], the full diago-  \yhen we give up the diagonalization approximations for
nalization approximation leads to a rather satisfactory agreer(q) andF(q) [caseiii)], is not obvious. We only note that
ment with simulations, without the artifact of separate tranne transition temperature is decreasing from caseT,
sitions and too low transition temperatures. The pronounced 1.4) over (i) (T.=1.38) to (i) (T.,=0.752), i.e., the

angular dependence of interaction between water moleculeg, e off-diagonal elements of the matdk are taken into
which is reflected in the fact that the static structure factors, .., nt £ is thet— c limit of the memory matrix, i.e., the

for =2, m=0,1,2, andl=0 are of the same order, yields anqom force correlation function. Therefore, it seems that
large enough vertices to produce a single transition tempergre more components of the random forces are coupled, the
ture of the TDOF and ODOF-. In the present case, the struGgyer s the transition temperature. This implies that the
ture factorSp is clearly more dominant tha, (see Fig. 2 more the random forces can mutually influence each other,
This is different from water, where ath for I=1"=2 are  the more difficult it is to form a glass. Although we cannot
important. This leads to tha posteriori conclusion that in prove this statement on mathematical grounds, it describes a
general the full diagonalization can only be ugidt all) for  feasible physical phenomenon.

systems with “very strong” static translation rotation cou-  To test the sensitivity of our results to changes in the
pling. This statement, unfortunately, cannot be further quangytoff, we also solved the MMCT for upper cutdff,=4.
tified. _ _ _ The larger cutoff value fol reduces the transition tempera-

If we now take the nondiagonality &(q) seriously but  tyre further towards the simulation result. Figg=4, an up-
Iegve all other matrices diagonaase(i)], addl_tlonal COU-  per and a lower bound fof, have been determined. The
pling between TDOF and ODOF appears, which may lead tqower bound is the highest temperature for which the NEP
an effectively stronger coupling. Although the equations forare still nonzero after 88 iterations. The upper bound is the
the differentl components of the NEP still couple only via temperature for which the NEP are converging to zero after
the diagonal memory functiong|'““ (q), the diagonalized about 24 iterations. Since the time per iteration increases

memory matrix contains nowtatic couplings betweerall
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FIG. 3. Normalized diagonal element§(q) of the nonergodicity parameter matrix. As normalization, the corresponding diagonal
elements of the static structure factor are used. Shown are the elementsnip+=(0,0) (a), (I,m)=(1,0) (b), (I,m)=(2,0) (c), and
(I,m)=(2,1) (d). The full line is the result of the simulation &t=0.477 obtained by fitting a von Schweidler law plus corrections of order
(t/7,)?" to the simulation data. The estimated critical temperatufe+s0.475. The long dashed line is the result of the fixed-point iteration
for upper cutoffl .,=2 atT=0.7521 slightly below the theoretic@l.=0.752 15. The short dashed curve is the result of the quasistationary
criterion for upper cutoff .,=2 atT=0.7522 slightly above the theoretichl. The dashed-dotted curve is the result of the quasistationary
criterion for upper cutoff .,,=4 atT=0.630(above the theoreticdl.) for | .,=4.

dramatically upon increasing the upper cutoff, the transitiorstructure. The corresponding simulation result is taken from
temperature could only be determined within 5%, [57]. It was obtained by fitting a von Schweidler law
=0.61. It is encouraging that the real transition is ap-plus corrections S, (q,t) =F1,(q) —H|[(q) (t/7,)"
proached upon increasing the cutoff, but our arguments pre+(H(2)):F,(q)(t/Ta)2b to the simulation results for the time-

sented above show that this is not necessarily the casg. dent densit lation functi i h .
Which of the competing mechanisms influencing the transi- ependent density correlation func |6ﬁ1‘,(q, ), wherer, is

tion temperature is dominant cannot be predicted on generfie a-relaxation scale. There are three different theoretical
grounds. curves. The two curves at temperatuiigs=0.7522,0.7521
are obtained with the fixed-point meth&ah the glass side of
the transition and the quasistability criteriofon the liquid

) side), respectively, as described above for upper cutgff

In the following, we concentrate on the results for the _ 5 their good agreement demonstrates the high accuracy
normalized NEPf[',(q)=F"(a)/\/S[(q)S,,(q) without  of the solution. The third theoretical curve shows the result
any diagonalization approximation. Figure 3 shows the norfor upper cutoffl .,,=4 using the more accurate quasistability
malized diagonal terms of the matrix of NEF'(q) for  criterion. Compared to the results [iB8], a clear improve-
(I,m)=(0,0),(1,0),(2,0),(2,1). Not shown are the resultsment of the agreement with simulations can be observed.
for (I,m)=(1,1),(2,2), since they do not exhibit very much Especially, theq dependence of the functions is very well

B. The nonergodicity parameters
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reproduced. Even a feature like the prepeakJs(q) at g But since the deviations to the true critical NEP at roughly
~2.5 is reproduced as a shoulder in the corresponding thedhe same number of iterations are of ordi€r-T.| for the
retical result. This peak is not present in the static structurdigher temperature compared to ordgfT—T, for the
factors. SinceS),(q) has a peak at about~2.5, it could lower one, we have to conclude that the results for the higher
appear due to a dynamic coupling of the ODOF, especialljfemperature are closer to the critical NEP of the theory. The
the one involvingl=1 and the TDOF. Note also that the better agreement with simulations of the NEPat0.600 is
mentioned peak exactly corresponds to the first peak im trivial consequence of the fact that positive NEP increase
f‘l’l(q)_ There is a tendency that the agreement is best arouritiith decreasing temperature. Due to this influence of the
the wave vector, where the structure fa(ff@&(q) has its first value Och on the amplitude of the normalized critical NEP,
peak and is getting worse for large wave vectors. This mighgve cannot in general conclude that increasing the cutgff
be interpreted as an indication for the glass transition bein¢gads to a better agreement with the simulation. It might even
driven also for the investigated system of diatomic molecule$iappen that the agreement with simulations gets worse in-
by the TDOF. From investigations of other systemsstead of better, if increasing the cutoff would lead to a larger
[46,49,50, we know that different scenarios are possible. transition temperature. This is possible due to the existence
Similar to increasingj, the agreement between simulation of negative vertices in the mode-coupling functiotfal
and theory gets worse with increasindhis is expected due The observed trends allow the reasonable hypothesis that
to two different reasons. First, highércorrespond to a the temperature effect could be the main source for the de-
higher angular resolution and are therefore probably muchkiations between simulation and theory. In general, the main
more affected by the mode-coupling approximation. Secondstructural features in the normalized nonergodicity parameter
higher| are of course much more sensitive to the cutgff are very well represented, but they are systematically too
than lowerl. The curves for larger cutoff increase the quality small for nearly all wave vectors, exactly as expected, if the
of the comparison with the MD results. But it is important to theoretical transition temperature is too large.
note that in our case no general rule can be given as to how Figure 5 demonstrates that the theory also gives good re-
much the quality of the results for lower valueslafan be  gyts for the off-diagonal NEP. We found tha}, and F3,
improved by increasing the upper cutoff, as this was done inye the only important off-diagonal components of the static
[32&. In thﬁ calse of a s.|r_19Ie dumbbell In-a I|quu|d Ofl hard structure factor matris(q) and NEP matrix=(q), respec-
spheres, the glass transition temperature is completely detet||r\'/ely. In Fig. 5, we therefore show the normalized NE—@%.

mined by the hard-sphere liquid and does not change b . . :
increasing the cutoff,,. As explained above, in our cade he quality of the result is even better than for the diagonal
components of the NEP.

can depend very sensitively dg,. But this influences di-
rectly the amplitude of the NEP via the trivial effect of the - _
temperature on the static structure factors. We already com- C. Critical amplitudes

pensate as much as possible for this mechanism by present- The critical amplitudes are determined only up to an over-

ing only the normalizedNEP. But as in the case of hard 4| scale factor. That is, our theoretical results cannot be di-

spheres, there is still the effect that also the normalized NE'?ectIy compared to the simulation results. But once we have
are proportional to the static structure factor. This is a Vely.hosen a scale factor for. e g. the amplitthr@g all other

nontrivial phenomenon, since the existence of negative ver- . - .
. . ; . . . amplitudes should be multiplied with the same scale factor to
tices in the mode-coupling functiona@(q) could in prin-

ciple lead to a violation of this correlation. But as can heCOmpare with the S|mulat|on§. In Fig(a, we have Chose.” a
inferred from Fig. 3, the NER(q),f%,(q) for | =4 are scale factor of 200 to obtain the best agreement with the
e 00 1122 co—

systematically larger than that fog,=2 in a large region normalized critical amplitudehgo(q)=Hgo(q)lsgo(q). The

around the first peak of the structure fac&(q), without featqres of this component are the same as in simple glass
big differences in the functional form. This effect, especiallyfc_’r_rnlng syster_ns{65—67,4. 10'here IS @ minimum at the po-
for F3,(q) where the mentioned trend is valid for all wave Sition of the first peak ofSy(q). Simulations and theory

vectors, can be mainly understood as a consequence of tif@mpare quite well for 2q<7 and show deviations at other
transition temperature being smaller fiQg=4 than forl,, Wave vectors. With the phosen scgle factors: the other diag-
=2, which causes the first peak 8},(q) to increase. Addi- onal elements of the critical amplitude matrix show strong
tional evidence for this reasoning is presented in Fig. 4. Irfleviations from the simulation results. Especial(q)

this figure, we show the results fog,=4 at temperaturd  [see Fig. 60)] does not even disagree in amplitude nor in the
=0.60, obtained with the fixed-point method, ahe0.63, form, except for the minimum ag~3. This is not unex-
obtained with the quasistability criterion. The lower tempera-pected, since the simulations have shown strong differences
ture is still in the glassthe required accuracy, i.e., the maxi- between the form of the dynamic correlators involving odd
mum difference between consecutive iterates, which isind everl [57]. Due to the weak top-down anisotropy of our
smaller than 10°, is reached after 88 iterationsAt the  diatomic molecules, the dynamic of the correlators involving
higher temperature, the accuracy is first increasing as exedd | is only weakly coupled to the dynamics of the even
pected(see the Appendijx But after 24 iterations, it begins component§43]. 180° jumps are still possible on a much
slowly to decrease and after 42 iterations the iterates start t@ster time scale than the translational motf&i]. Conse-
converge quickly towards the solutidgf(q) =0. The results quently, there are strong corrections to the asymptotic results
for the lower temperature agree, exceptlfer0, much better for the correlatorS},(qg,t) and the amplitudén;(q) is not

with the simulation than the one for the higher temperaturevery well defined.
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FIG. 4. Normalized diagonal elemerft3(q) of the nonergodicity parameter matrix flog=4 obtained with the fixed-point method and
stationary criterion, respectively, in comparison with simulation. As normalization, the corresponding diagonal elements of the static
structure factor are used. Shown are the elementsl for) & (0,0) (a), (I,m)=(1,0) (b), (I,m)=(2,0) (c), and (,m)=(2,1) (d). The full
line is the result of the simulation &=0.477. The long dashed line is the result of the fixed-point iteration for upper dytefd atT
=0.600. The short dashed curve is the result of the quasistationary criterion for uppenr ggtdffat T=0.630.

The deviations between simulation and theory@g [see plitude prefactor as a free fit parameter, but the agreement is
Fig. 6(c)] are more serious, sincfégz(q,t) exhibits a well-  still not very good. Much better is the agreemésitnilar to
defined 8 region. We can improve the agreement betweerthe NEB for hg, (see Fig. 8, although we still had to choose
simulation and theory by choosing a free scale factor for théhe amplitude scale of the simulation as a free fit parameter.
simulation curves. The result is shown in Figdpto dem-
onstrate, in contrast th,, that essential structural features IV. CONCLUSIONS
in hy, are |r_1deed reproduced by the theory. As argl_Jed abov_e, We have performed a quantitative test of MMCT for a
the dynamic correlators and therefore also the critical ampli-. . . ;

) T liquid of diatomic molecules. The static structure factors
tudes involvingl =2 are much more affected by the cutoff from simulations were used as input for the MMCT to cal-
[ ;o= 2 than the one with lowdr This might be the reason for P

. : culate the critical temperaturk,, the matrix of critical NEP
the rather large discrepancy found fuﬁz. To determine the F™ (q), and the maFt)rix ofré:;ritical “scaling amplitudes
critical amplitudes, it is necessary to be very close to the !l D B 9 P

critical point. Restriction in computer time did not allow us Hyi»(d). Several approximation schemes were used to test
to determineT,, for | ,,=4 with high enough accuracy to get the sensitivity of the results against changing the degree of
reliable results for the critical amplitudes. diagonalization of th(F,T,(q) in 1 andl’ and the dependence

The critical amplitudes withm>0 do not exhibit very on the upper cutoff,,. As maximum cutoff,|.,=4 was
much structure. In Fig. 7, we show for completeness thaised. Since the computational effort increases strongly with
result forh%z(q), which could in principle be measured in |.,, we used a more accurate method to determine the critical
light scattering experiments. Again we choose an overall amNEP from the liquid side of the transition.
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1.0 - . - - offers an overall consistent description of the glass transition
MD (T=0.477) in molecular liquid of diatomic molecules, at least concern-
——- MCT (T=0.7521, _=2) ing the critical NEP and the critical amplitudes.

-~ -~ MCT (T=0.630, | _=4)
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APPENDIX: DETERMINATION OF THE NEP USING
1 QUASISTABILITY

If the temperature is chosen above the critical tempera-
ture, the only stable fixed point of the iteratigh5) is F
19,5 5.0 0.0 5.0 20.0 250 = 0. Butthere is still the possibility of determining the criti-
q cal NEP with even higher accuracy than with the converging
_ _ iteration forT<T.. To implement the method, we have to
FIG. 5. Normalized off-diagonal elementg,(q) of the noner-  initialize the iteration wittF (%), which is close td=¢ , where
godicity parameter matrix. As normalizatiog/S3,S3, was chosen. 1 is a superindex fog, I, 1”, andm. This can be achieved by
The full line is the result of the simulation a&=0.477. The long first using the fixed-point iteration

dashed line is the result of the fixed-point iteration for upper cutoff
l.oc=2 at T=0.7521. The short dashed curve is the result of the F(n+ 1):g ({F(n,)} €) (A1)
quasistationary criterion for upper cutdff,=4 atT=0.630. m pEL wr

belowT, and increasing the temperatures in small steps until
the liquid regime is reached. The critical temperature will
, eventually be missed by a small value<6-e<1 and the
fﬂ],‘m (), all degrees of freedom vitrify at a single tempera-iteration converges after bng transient quickly to zero.
ture. In fact, to obtain a unique transition temperature, it isSince the iteration at a given temperature is always initial-
sufficient to keep only the static structure facﬁﬁ'},(q) non- ized with the fi_nal_resul_t of the previous t_emp_erature, the
diagonal inl and|’. The strongest effect of successively @bove assumption is fulfilled. The long transient is caused by

be dominated for a long time by the critical direction of the

iteration, which is given by the eigenvectef, which be-
longs to the eigenvalugy=1 of thecritical stability matrix

Cc Fa .
Contrary toT,, the overall form of NEP is much less _(CW.,):-(agM/aFM,)C .[61]' The '.\IEPF“(E). "."t .W.h'Ch the.
sensitive to the different approximation schemes. The agreét-eraltlon IS almos_t stationary is given by minimizing the dis-

ment with simulation is qualitatively quite good for cutoff t@nce of the projection oAC,=G,({F,,,€})—F, on the
lo=2 as well as fot ,=4. In some cases, especially for the critical directione®, where for technical reasons tedt criti-
|=0,"=0 component and the off-diagoniak0]’=2 com-  cal eigenvectoe® was chosen. This condition can be written
ponent of the NEP, the agreement is even quantitative foas

wave vectors around the first peak of the structure factor

Sgo(q). The comparison of the NEP with simulations for the ﬁz &CAC
correlator with (=0,"'=0) is clearly improved using the z M
cutoff I.,=4 instead ofl .,=2. Other correlators are better IF
represented for,,=2. We therefore cannot conclude that in ®

general a further increase of the cutoff will lead necessarily, . . S o
to still better agreement with simulations. Equation(A2) determines the quasistationary pokf(e),

Also the wave-vector dependence of the normalized critiSuch that matrixC,,,.({F v, €}) has an eigenvalué,(e)
cal B-scaling amplitudes agrees quite well with the one ob-=1 for e<0. <0 indicates that the temperature T
tained from simulations. Contrary to the prediction of =T, (1—¢€)>T.. This stationary point , differs from F;
MMCT, no common amplitude scale for the critical ampli- in ordere. This can be proven by using an argument analo-
tUdteSI with dri]ff?rr]emtr’;_nd:c' _|COU|d_ be folund.dAt ptrestfﬁ]m,]j_ttti_s gous to deriving theg-scaling equatioi6]. Defining &, by
not clear whether this failure is real or due to the fittingg _ e % and using the property tha, . ({E 1, €) is a

i i ; i M Iz I s n
procedure used 'i‘57.] FO obtain the beta relaxation a_mp" smooth differentiable function of, Eq.(A2) can be written,
tudes. Also the restriction to cutoff,=2 for the determina- | X A

in leading order ind,, ande, as

o ; . . - - aC . (F%€)

critical amplitudes at=2. By neglecting them, an errorin  0=> &¢| > C, ./ #(F°0)8 ++ —H£ "~ el
. . : 13 Iy ' 13 Je
the amplitude scale is possible. © " =0

tion of the critical amplitudes could cause the found discrep
In summarizing our study, we may say that the MMCT (A3)

As expected, by giving up any diagonalization approxi-
mation for S,(q), F|.(q), and the memory functional

maa’

Fﬂ",(q) and the memory functionaf >~ (q) is the change
of the transition temperaturéel,. Also using different cut-
offs | ., changes the transition temperature.

:2 ézcﬂﬂr({ﬁﬂu},é)—é;,:o. (AZ)
o

ancies, since also correlators with 2 will contribute to the
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FIG. 6. Normalized diagonal elemerit§(q) of the matrix of critical amplitudes. As normalization, the corresponding diagonal elements
of the static structure factor are used. The result of the simulatidr=&t.477 is obtained by fitting a von Schweidler law plus corrections
of order ¢/7,)?" to the simulation data. The fits to the simulatigfl lines) are multiplied with a factor 20(see text for detailsto obtain
the best agreement with the theoretical resullﬁgb(q). Shown are the theoretical results o= 0.7521, upper cutoff.,= 2. (a)—(c) show
the results for (;m)=(0,0), (1,0), and2,0), respectively. The dashed curve is always the result of the thérghows again the same
theoretical result as ifc), but the free scale factor of the critical amplitude of the simulation is chosen to optimize the agreement with theory
(see text for details

Here we have in addition used thef} is the left eigenvector Neglecting terms of order&}”)*, the iteration(A1) can be

of the stability matrix at the critical point with eigenvalue rewritten as

Eo=1. The tensorC,, ,» is the partial derivative of the

stability matrix with respect t& ,». Equation(A3) immedi-

ately shows thaté is (at least of order e. Note that the

argument crumally depends on the well-known phenomenomhere the quantities with a caret are taken{EtMQ} €). The

that static quantities such as the structure factors, which deslowing down of the iteration is due to the componen®pf

termine completely the stability matri>xC(, ,-({F ,»},€), are  along the critical directiore®. This component can be ex-

varying smoothly across the glass transition. tracted by writing 5M=a(e® and multiplying Eq.(A4)
We now want to estimate the number of iterations reyjth the left eigenvectog® of the stability matrixC. The

quired to approach the quasistationary péinfor that mat-  resulting equation foa(™ is then

ter, the |terate§(”) are expanded around the quasistationary

point

S V=AC,+C,, 60 +1C,, 0NN, (Ad)

amH—alW=g+(\-1)(a")? (AS)

Here we made use of EGA2) and have normalized®,e®

FE?):FMJF 521)- such thatEMeM =1. The quantitiesr=3 eZACM and A

y7
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FIG. 7. Normalized critical amplitudh%z(q). The critical am-
plitude of the simulatior(full line) is multiplied with a free scale
factor to optimize agreement with theokgee text for details
Shown is the theoretical result fdr=0.7521(dashed ling

=1+3,€C,. €€, can be identified as the separation
parameter and the exponent parameter\G<1l of the
[B-scaling theory, respective[,68]. Since consecutive iter-

ates are very close to each other in the vicinity=ofwe can
rewrite Eqg.(A5) as a differential equation,
—a=[|o|+(1-N\)a?]. (AB)

Let us assume we start the iterationtatO with a(0)
=ap. Then the solution of Eq(A6) is

Vol
Ji-)

a(t)= tar{ \/(1—)\)|o|t—arctar< ao%) .
(A7)

A. WINKLER, A. LATZ, R. SCHILLING, AND C. THEIS

PRE 62

0.6 T T T T

—— MD (T=0.477)
——- MCT (T=0.7521)

0.4

0.2

hozo(Q)

10.0 15.0 20.0 25.0

q

FIG. 8. Normalized critical amplitudbgz(q). The critical am-
plitude of the simulation at = 0.477(full line) is multiplied with a
free scale factor to optimize agreement with the¢sge text for
detailg. Shown is the theoretical result for= 0.7521(dashed ling
Since the raw data of the simulations had to be smoothed, the data
points are omitted.

Since the iteration is initialized with a value fBrslightly
in the glass, the initial deviatiom, from F is of order
Jlo|=0(\/|€]). From Eq.(A7) it then follows that we need
a number of iterations of the order\ﬂ to approach- [i.e.,
a(t)=0], and will stay close td- [i.e., a(t)<O(\|a])] for
the same amount of iterations before the iterates decay to
zero. This proves our statement that the quasistationary so-
lution of the iteration fofT>T, is approached with the same
amount of iterations as the stable solution slightly beTqw
But there the glass solution agrees withonly up to order
Je. The quasistationary solutidh, however, agrees WitR°®
up to order|e|< €]
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